3.2.39 \(\int \frac {\sqrt {d+e x^2} (a+b \text {sech}^{-1}(c x))}{x^6} \, dx\) [139]

Optimal. Leaf size=446 \[ \frac {b \left (12 c^2 d-e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d x^3}+\frac {b \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d^2 x}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {b c \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {d+e x^2} E\left (\text {ArcSin}(c x)\left |-\frac {e}{c^2 d}\right .\right )}{225 d^2 \sqrt {1+\frac {e x^2}{d}}}-\frac {b \left (c^2 d+e\right ) \left (24 c^4 d^2+7 c^2 d e-30 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1+\frac {e x^2}{d}} F\left (\text {ArcSin}(c x)\left |-\frac {e}{c^2 d}\right .\right )}{225 c d^2 \sqrt {d+e x^2}} \]

[Out]

-1/5*(e*x^2+d)^(3/2)*(a+b*arcsech(c*x))/d/x^5+2/15*e*(e*x^2+d)^(3/2)*(a+b*arcsech(c*x))/d^2/x^3+1/25*b*(1/(c*x
+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/x^5+1/45*b*e*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2
*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/d/x^3+1/75*b*(4*c^2*d+e)*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x
^2+d)^(1/2)/d/x^3-2/15*b*e^2*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/d^2/x+1/45*b*e
*(2*c^2*d+e)*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/d^2/x+1/75*b*(8*c^4*d^2+3*c^2*
d*e-2*e^2)*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(-c^2*x^2+1)^(1/2)*(e*x^2+d)^(1/2)/d^2/x-2/15*b*c*e^2*EllipticE(c*x
,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(e*x^2+d)^(1/2)/d^2/(1+e*x^2/d)^(1/2)+1/45*b*c*e*(2*c^2*d+e
)*EllipticE(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(e*x^2+d)^(1/2)/d^2/(1+e*x^2/d)^(1/2)+1/75*b
*c*(8*c^4*d^2+3*c^2*d*e-2*e^2)*EllipticE(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(e*x^2+d)^(1/2)
/d^2/(1+e*x^2/d)^(1/2)-1/75*b*c*(8*c^2*d-e)*(c^2*d+e)*EllipticF(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(1/2)*(c*x+1
)^(1/2)*(1+e*x^2/d)^(1/2)/d/(e*x^2+d)^(1/2)-2/45*b*c*e*(c^2*d+e)*EllipticF(c*x,(-e/c^2/d)^(1/2))*(1/(c*x+1))^(
1/2)*(c*x+1)^(1/2)*(1+e*x^2/d)^(1/2)/d/(e*x^2+d)^(1/2)+2/15*b*e^2*(c^2*d+e)*EllipticF(c*x,(-e/c^2/d)^(1/2))*(1
/(c*x+1))^(1/2)*(c*x+1)^(1/2)*(1+e*x^2/d)^(1/2)/c/d^2/(e*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.38, antiderivative size = 446, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 11, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {277, 270, 6436, 12, 594, 597, 538, 437, 435, 432, 430} \begin {gather*} \frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}-\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (c^2 d+e\right ) \left (24 c^4 d^2+7 c^2 d e-30 e^2\right ) \sqrt {\frac {e x^2}{d}+1} F\left (\text {ArcSin}(c x)\left |-\frac {e}{c^2 d}\right .\right )}{225 c d^2 \sqrt {d+e x^2}}+\frac {b c \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {d+e x^2} E\left (\text {ArcSin}(c x)\left |-\frac {e}{c^2 d}\right .\right )}{225 d^2 \sqrt {\frac {e x^2}{d}+1}}+\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}+\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {1-c^2 x^2} \left (12 c^2 d-e\right ) \sqrt {d+e x^2}}{225 d x^3}+\frac {b \sqrt {\frac {1}{c x+1}} \sqrt {c x+1} \sqrt {1-c^2 x^2} \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {d+e x^2}}{225 d^2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]))/x^6,x]

[Out]

(b*(12*c^2*d - e)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/(225*d*x^3) + (b*(24*c
^4*d^2 + 19*c^2*d*e - 31*e^2)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2]*Sqrt[d + e*x^2])/(225*d^2*x
) + (b*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[1 - c^2*x^2]*(d + e*x^2)^(3/2))/(25*d*x^5) - ((d + e*x^2)^(3/2)
*(a + b*ArcSech[c*x]))/(5*d*x^5) + (2*e*(d + e*x^2)^(3/2)*(a + b*ArcSech[c*x]))/(15*d^2*x^3) + (b*c*(24*c^4*d^
2 + 19*c^2*d*e - 31*e^2)*Sqrt[(1 + c*x)^(-1)]*Sqrt[1 + c*x]*Sqrt[d + e*x^2]*EllipticE[ArcSin[c*x], -(e/(c^2*d)
)])/(225*d^2*Sqrt[1 + (e*x^2)/d]) - (b*(c^2*d + e)*(24*c^4*d^2 + 7*c^2*d*e - 30*e^2)*Sqrt[(1 + c*x)^(-1)]*Sqrt
[1 + c*x]*Sqrt[1 + (e*x^2)/d]*EllipticF[ArcSin[c*x], -(e/(c^2*d))])/(225*c*d^2*Sqrt[d + e*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 277

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^(p + 1)/(a*(m + 1))), x]
 - Dist[b*((m + n*(p + 1) + 1)/(a*(m + 1))), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 432

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 437

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
, Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 538

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))

Rule 594

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*g*(m + 1))), x] - Dist[1/(a*g^n*(m + 1
)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*n*(b*c*(p + 1) + a*d*q)
 + d*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && IGtQ[n
, 0] && GtQ[q, 0] && LtQ[m, -1] &&  !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 6436

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcSech[c*x], u, x] + Dist[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)],
 Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] &&
 ((IGtQ[p, 0] &&  !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] &&  !(ILtQ[p, 0] && GtQ
[m + 2*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] &&  !ILtQ[(m - 1)/2, 0]))

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x^2} \left (a+b \text {sech}^{-1}(c x)\right )}{x^6} \, dx &=-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\left (d+e x^2\right )^{3/2} \left (-3 d+2 e x^2\right )}{15 d^2 x^6 \sqrt {1-c^2 x^2}} \, dx\\ &=-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\left (d+e x^2\right )^{3/2} \left (-3 d+2 e x^2\right )}{x^6 \sqrt {1-c^2 x^2}} \, dx}{15 d^2}\\ &=\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\sqrt {d+e x^2} \left (-d \left (12 c^2 d-e\right )-\left (3 c^2 d-10 e\right ) e x^2\right )}{x^4 \sqrt {1-c^2 x^2}} \, dx}{75 d^2}\\ &=\frac {b \left (12 c^2 d-e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d x^3}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {-d \left (24 c^4 d^2+19 c^2 d e-31 e^2\right )-2 e \left (6 c^4 d^2+4 c^2 d e-15 e^2\right ) x^2}{x^2 \sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \, dx}{225 d^2}\\ &=\frac {b \left (12 c^2 d-e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d x^3}+\frac {b \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d^2 x}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}-\frac {\left (b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {2 d e \left (6 c^4 d^2+4 c^2 d e-15 e^2\right )-c^2 d e \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) x^2}{\sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \, dx}{225 d^3}\\ &=\frac {b \left (12 c^2 d-e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d x^3}+\frac {b \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d^2 x}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {\left (b c^2 \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {\sqrt {d+e x^2}}{\sqrt {1-c^2 x^2}} \, dx}{225 d^2}-\frac {\left (b \left (c^2 d+e\right ) \left (24 c^4 d^2+7 c^2 d e-30 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x}\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {d+e x^2}} \, dx}{225 d^2}\\ &=\frac {b \left (12 c^2 d-e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d x^3}+\frac {b \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d^2 x}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {\left (b c^2 \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {d+e x^2}\right ) \int \frac {\sqrt {1+\frac {e x^2}{d}}}{\sqrt {1-c^2 x^2}} \, dx}{225 d^2 \sqrt {1+\frac {e x^2}{d}}}-\frac {\left (b \left (c^2 d+e\right ) \left (24 c^4 d^2+7 c^2 d e-30 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1+\frac {e x^2}{d}}\right ) \int \frac {1}{\sqrt {1-c^2 x^2} \sqrt {1+\frac {e x^2}{d}}} \, dx}{225 d^2 \sqrt {d+e x^2}}\\ &=\frac {b \left (12 c^2 d-e\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d x^3}+\frac {b \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \sqrt {d+e x^2}}{225 d^2 x}+\frac {b \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1-c^2 x^2} \left (d+e x^2\right )^{3/2}}{25 d x^5}-\frac {\left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{5 d x^5}+\frac {2 e \left (d+e x^2\right )^{3/2} \left (a+b \text {sech}^{-1}(c x)\right )}{15 d^2 x^3}+\frac {b c \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {d+e x^2} E\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{225 d^2 \sqrt {1+\frac {e x^2}{d}}}-\frac {b \left (c^2 d+e\right ) \left (24 c^4 d^2+7 c^2 d e-30 e^2\right ) \sqrt {\frac {1}{1+c x}} \sqrt {1+c x} \sqrt {1+\frac {e x^2}{d}} F\left (\sin ^{-1}(c x)|-\frac {e}{c^2 d}\right )}{225 c d^2 \sqrt {d+e x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 24.18, size = 641, normalized size = 1.44 \begin {gather*} \frac {\frac {15 a \left (d+e x^2\right )^2 \left (-3 d+2 e x^2\right )}{x^5}+\frac {b \sqrt {\frac {1-c x}{1+c x}} (1+c x) \left (d+e x^2\right ) \left (-31 e^2 x^4+d e x^2 \left (8+19 c^2 x^2\right )+3 d^2 \left (3+4 c^2 x^2+8 c^4 x^4\right )\right )}{x^5}+\frac {15 b \left (d+e x^2\right )^2 \left (-3 d+2 e x^2\right ) \text {sech}^{-1}(c x)}{x^5}+\frac {b \sqrt {\frac {1-c x}{1+c x}} \left (-c^2 \left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) \left (d+e x^2\right )-\frac {i \left (c \sqrt {d}-i \sqrt {e}\right )^2 (1+c x) \sqrt {\frac {c \left (\sqrt {d}-i \sqrt {e} x\right )}{\left (c \sqrt {d}-i \sqrt {e}\right ) (1+c x)}} \sqrt {\frac {c \left (\sqrt {d}+i \sqrt {e} x\right )}{\left (c \sqrt {d}+i \sqrt {e}\right ) (1+c x)}} \left (\left (24 c^4 d^2+19 c^2 d e-31 e^2\right ) E\left (i \sinh ^{-1}\left (\sqrt {\frac {\left (c^2 d+e\right ) (1-c x)}{\left (c \sqrt {d}+i \sqrt {e}\right )^2 (1+c x)}}\right )|\frac {\left (c \sqrt {d}+i \sqrt {e}\right )^2}{\left (c \sqrt {d}-i \sqrt {e}\right )^2}\right )+2 \sqrt {e} \left (24 i c^3 d^{3/2}-36 c^2 d \sqrt {e}-29 i c \sqrt {d} e+30 e^{3/2}\right ) F\left (i \sinh ^{-1}\left (\sqrt {\frac {\left (c^2 d+e\right ) (1-c x)}{\left (c \sqrt {d}+i \sqrt {e}\right )^2 (1+c x)}}\right )|\frac {\left (c \sqrt {d}+i \sqrt {e}\right )^2}{\left (c \sqrt {d}-i \sqrt {e}\right )^2}\right )\right )}{\sqrt {-\frac {\left (c \sqrt {d}-i \sqrt {e}\right ) (-1+c x)}{\left (c \sqrt {d}+i \sqrt {e}\right ) (1+c x)}}}\right )}{c}}{225 d^2 \sqrt {d+e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Sqrt[d + e*x^2]*(a + b*ArcSech[c*x]))/x^6,x]

[Out]

((15*a*(d + e*x^2)^2*(-3*d + 2*e*x^2))/x^5 + (b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x)*(d + e*x^2)*(-31*e^2*x^4 +
 d*e*x^2*(8 + 19*c^2*x^2) + 3*d^2*(3 + 4*c^2*x^2 + 8*c^4*x^4)))/x^5 + (15*b*(d + e*x^2)^2*(-3*d + 2*e*x^2)*Arc
Sech[c*x])/x^5 + (b*Sqrt[(1 - c*x)/(1 + c*x)]*(-(c^2*(24*c^4*d^2 + 19*c^2*d*e - 31*e^2)*(d + e*x^2)) - (I*(c*S
qrt[d] - I*Sqrt[e])^2*(1 + c*x)*Sqrt[(c*(Sqrt[d] - I*Sqrt[e]*x))/((c*Sqrt[d] - I*Sqrt[e])*(1 + c*x))]*Sqrt[(c*
(Sqrt[d] + I*Sqrt[e]*x))/((c*Sqrt[d] + I*Sqrt[e])*(1 + c*x))]*((24*c^4*d^2 + 19*c^2*d*e - 31*e^2)*EllipticE[I*
ArcSinh[Sqrt[((c^2*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (c*Sqrt[d] + I*Sqrt[e])^2/(c*Sqr
t[d] - I*Sqrt[e])^2] + 2*Sqrt[e]*((24*I)*c^3*d^(3/2) - 36*c^2*d*Sqrt[e] - (29*I)*c*Sqrt[d]*e + 30*e^(3/2))*Ell
ipticF[I*ArcSinh[Sqrt[((c^2*d + e)*(1 - c*x))/((c*Sqrt[d] + I*Sqrt[e])^2*(1 + c*x))]], (c*Sqrt[d] + I*Sqrt[e])
^2/(c*Sqrt[d] - I*Sqrt[e])^2]))/Sqrt[-(((c*Sqrt[d] - I*Sqrt[e])*(-1 + c*x))/((c*Sqrt[d] + I*Sqrt[e])*(1 + c*x)
))]))/c)/(225*d^2*Sqrt[d + e*x^2])

________________________________________________________________________________________

Maple [F]
time = 0.43, size = 0, normalized size = 0.00 \[\int \frac {\left (a +b \,\mathrm {arcsech}\left (c x \right )\right ) \sqrt {e \,x^{2}+d}}{x^{6}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^6,x)

[Out]

int((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^6,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^6,x, algorithm="maxima")

[Out]

1/15*a*(2*(x^2*e + d)^(3/2)*e/(d^2*x^3) - 3*(x^2*e + d)^(3/2)/(d*x^5)) + 1/15*b*((2*x^5*e^2 - d*x^3*e - 3*d^2*
x)*sqrt(x^2*e + d)*log(sqrt(c*x + 1)*sqrt(-c*x + 1) + 1)/(d^2*x^6) - 15*integrate(1/15*(15*c^2*d^2*x^2*log(c)
- 15*d^2*log(c) + (2*c^2*x^6*e^2 - c^2*d*x^4*e + 3*(5*d^2*log(c) - d^2)*c^2*x^2 - 15*d^2*log(c) + 30*(c^2*d^2*
x^2 - d^2)*log(sqrt(x)))*e^(1/2*log(c*x + 1) + 1/2*log(-c*x + 1)) + 30*(c^2*d^2*x^2 - d^2)*log(sqrt(x)))*sqrt(
x^2*e + d)/((c^2*d^2*x^2 - d^2)*x^6 + (c^2*d^2*x^2 - d^2)*e^(1/2*log(c*x + 1) + 1/2*log(-c*x + 1) + 6*log(x)))
, x))

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^6,x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \operatorname {asech}{\left (c x \right )}\right ) \sqrt {d + e x^{2}}}{x^{6}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asech(c*x))*(e*x**2+d)**(1/2)/x**6,x)

[Out]

Integral((a + b*asech(c*x))*sqrt(d + e*x**2)/x**6, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsech(c*x))*(e*x^2+d)^(1/2)/x^6,x, algorithm="giac")

[Out]

integrate(sqrt(e*x^2 + d)*(b*arcsech(c*x) + a)/x^6, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {e\,x^2+d}\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{x^6} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((d + e*x^2)^(1/2)*(a + b*acosh(1/(c*x))))/x^6,x)

[Out]

int(((d + e*x^2)^(1/2)*(a + b*acosh(1/(c*x))))/x^6, x)

________________________________________________________________________________________